Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False:
A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation
विकल्प
True
False
उत्तर
True
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`dy/dx + y = 1(y != 1)`
For the differential equation, find the general solution:
(ex + e–x) dy – (ex – e–x) dx = 0
For the differential equation, find the general solution:
`dy/dx = sin^(-1) x`
For the differential equation, find the general solution:
ex tan y dx + (1 – ex) sec2 y dy = 0
For the differential equation find a particular solution satisfying the given condition:
`(x^3 + x^2 + x + 1) dy/dx = 2x^2 + x; y = 1` When x = 0
For the differential equation find a particular solution satisfying the given condition:
`x(x^2 - 1) dy/dx = 1` , y = 0 when x = 2
For the differential equation find a particular solution satisfying the given condition:
`dy/dx` = y tan x; y = 1 when x = 0
Find the equation of a curve passing through the point (0, 0) and whose differential equation is y′ = e x sin x.
For the differential equation `xy(dy)/(dx) = (x + 2)(y + 2)` find the solution curve passing through the point (1, –1).
Find the equation of a curve passing through the point (0, -2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.
The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.
In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
Find the particular solution of the differential equation:
`y(1+logx) dx/dy - xlogx = 0`
when y = e2 and x = e
Solve the differential equation:
`dy/dx = 1 +x+ y + xy`
Solve `dy/dx = (x+y+1)/(x+y-1) when x = 2/3 and y = 1/3`
Solve
`y log y dy/dx + x – log y = 0`
Solve
`y log y dx/ dy = log y – x`
Find the solution of `"dy"/"dx"` = 2y–x.
Find the differential equation of all non-vertical lines in a plane.