Advertisements
Advertisements
प्रश्न
Solve the differential equation:
`dy/dx = 1 +x+ y + xy`
उत्तर
`dy/dx =1 + x+ y +xy`
=(1 + x)+ y (1+x)
= (1 + x) (1 + y)
∴ `dy/(1+y) = (1+x) dx`
Integrating on both sides, we get
`intdy/(1+y) =int (1+x) dx`
∴ `log | 1+y| = x + x^2/2 + c`
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`dy/dx + y = 1(y != 1)`
For the differential equation, find the general solution:
sec2 x tan y dx + sec2 y tan x dy = 0
For the differential equation, find the general solution:
y log y dx - x dy = 0
For the differential equation find a particular solution satisfying the given condition:
`x(x^2 - 1) dy/dx = 1` , y = 0 when x = 2
For the differential equation find a particular solution satisfying the given condition:
`cos (dx/dy) = a(a in R); y = 1` when x = 0
For the differential equation find a particular solution satisfying the given condition:
`dy/dx` = y tan x; y = 1 when x = 0
Find the equation of a curve passing through the point (0, 0) and whose differential equation is y′ = e x sin x.
In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?
Find the equation of the curve passing through the point `(0,pi/4)`, whose differential equation is sin x cos y dx + cos x sin y dy = 0.
Solve the equation for x:
sin-1x + sin-1(1 - x) = cos-1x, x ≠ 0
Solve the differential equation `"dy"/"dx" = 1 + "x"^2 + "y"^2 +"x"^2"y"^2`, given that y = 1 when x = 0.
Fill in the blank:
The integrating factor of the differential equation `dy/dx – y = x` is __________
Solve `dy/dx = (x+y+1)/(x+y-1) when x = 2/3 and y = 1/3`
Solve
y dx – x dy = −log x dx
State whether the following statement is True or False:
A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation
Solve the differential equation `"dy"/"dx" + 1` = ex + y.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
Which method of solving a differential equation can be used to solve `"dy"/"dx" = "k"(50 - "y")`?
Find the equation of the curve passing through the (0, –2) given that at any point (x, y) on the curve the product of the slope of its tangent and y-co-ordinate of the point is equal to the x-co-ordinate of the point.
Solve the following differential equation
x2y dx – (x3 + y3)dy = 0