Advertisements
Advertisements
प्रश्न
Solve the differential equation:
`e^(dy/dx) = x`
उत्तर
`e^(dy/dx) = x`
∴ `dy/dx = log x`
∴ dy = log x dx
Integrating on both sides, we get
`int dy = int (logx)1 dx`
∴ `y = log x int1dx - int [ d/dx(logx)int1dx] dx`
= `x log x -int 1/x. x dx`
= `x log x -int dx`
∴ y = x log x - x + c
APPEARS IN
संबंधित प्रश्न
xy dy = (y − 1) (x + 1) dx
dy + (x + 1) (y + 1) dx = 0
(x + 2y) dx − (2x − y) dy = 0
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.