Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = e^{x + y} + e^y x^3 \]
\[ \Rightarrow \frac{dy}{dx} = e^x e^y + e^y x^3 \]
\[ \Rightarrow \frac{dy}{dx} = e^y \left( e^x + x^3 \right)\]
\[ \Rightarrow \left( e^x + x^3 \right) dx = \frac{1}{e^y}dy\]
Integrating both sides, we get
\[\int\left( e^x + x^3 \right) dx = \int\frac{1}{e^y}dy\]
\[ \Rightarrow e^x + \frac{x^4}{4} = - e^{- y} + C\]
\[ \Rightarrow e^x + e^{- y} + \frac{x^4}{4} = C\]
\[\text{ Hence, } e^x + e^{- y} + \frac{x^4}{4} =\text{ C is the required solution .} \]
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
(sin x + cos x) dy + (cos x − sin x) dx = 0
(1 − x2) dy + xy dx = xy2 dx
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve the differential equation xdx + 2ydy = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
The function y = ex is solution ______ of differential equation
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.