हिंदी

The differential equation of y=k1ex+k2e-x is ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.

विकल्प

  • `(d^2y)/dx^2 - y = 0`

  • `(d^2y)/dx^2 + dy/dx  = 0`

  • `(d^2y)/dx^2 + ydy/dx  = 0`

  • `(d^2y)/dx^2 + y  = 0`

MCQ
रिक्त स्थान भरें

उत्तर

The differential equation of `y = k_1e^x+ k_2 e^-x` is `underlinebb((d^2y)/dx^2 - y = 0)`.

Explanation:

`y = k_1e^x+ k_2 e^-x`

Differentiating w.r.t. x, we get

`dy/dx = k_1e^x -  k_2 e^-x`

Again, differentiating w.r.t. x, we get

`(d^2y)/dx^2 = k_1 e^x + k_2 e^-x`

∴ `(d^2y)/dx^2 = y`

∴ `(d^2y)/dx^2 - y = 0`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 1.04 | पृष्ठ १७१

संबंधित प्रश्न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} + 2x = e^{3x}\]

(1 − x2) dy + xy dx = xy2 dx


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve:

(x + y) dy = a2 dx


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×