Advertisements
Advertisements
प्रश्न
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
विकल्प
`(d^2y)/dx^2 - y = 0`
`(d^2y)/dx^2 + dy/dx = 0`
`(d^2y)/dx^2 + ydy/dx = 0`
`(d^2y)/dx^2 + y = 0`
उत्तर
The differential equation of `y = k_1e^x+ k_2 e^-x` is `underlinebb((d^2y)/dx^2 - y = 0)`.
Explanation:
`y = k_1e^x+ k_2 e^-x`
Differentiating w.r.t. x, we get
`dy/dx = k_1e^x - k_2 e^-x`
Again, differentiating w.r.t. x, we get
`(d^2y)/dx^2 = k_1 e^x + k_2 e^-x`
∴ `(d^2y)/dx^2 = y`
∴ `(d^2y)/dx^2 - y = 0`
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(1 − x2) dy + xy dx = xy2 dx
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve:
(x + y) dy = a2 dx
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.