हिंदी

Show that Ax2 + By2 = 1 is a Solution of the Differential Equation X { Y D 2 Y D X 2 + ( D Y D X ) 2 } = Y D Y D X - Mathematics

Advertisements
Advertisements

प्रश्न

Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 

योग

उत्तर

We have,

\[A x^2 + B y^2 = 1.............(1)\]

Differentiating both sides of (1) with respect to x, we get
\[2Ax + 2By\frac{dy}{dx} = 0 ...........(2)\]
Differentiating both sides of (2) with respect to x, we get
\[2A + 2B \left( \frac{dy}{dx} \right)^2 + 2By\frac{d^2 y}{d x^2} = 0\]
\[ \Rightarrow 2B\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] = - 2A\]
\[ \Rightarrow \left[ y\frac{dy}{dx} + \left( \frac{dy}{dx} \right)^2 \right] = - \frac{2A}{2B}\]
\[ \Rightarrow \left[ y\frac{dy}{dx} + \left( \frac{dy}{dx} \right)^2 \right] = - \left( - \frac{y}{x}\frac{dy}{dx} \right) ...........\left[\text{Using (2)}\right]\]
\[ \Rightarrow x\left[ y\frac{dy}{dx} + \left( \frac{dy}{dx} \right)^2 \right] = y\frac{dy}{dx}\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.03 | Q 9 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

dy + (x + 1) (y + 1) dx = 0


\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

(y2 − 2xy) dx = (x2 − 2xy) dy


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


 `dy/dx = log x`


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve the following differential equation y2dx + (xy + x2) dy = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×