हिंदी

Find the Equation of the Curve Which Passes Through the Point (3, −4) and Has the Slope 2 Y X at Any Point (X, Y) on It. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.

योग

उत्तर

According to the question,
\[\frac{dy}{dx} = \frac{2y}{x}\]
\[\Rightarrow \frac{1}{2y}dy = \frac{1}{x}dx\]
Integrating both sides with respect to x, we get
\[\int\frac{1}{2y}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\log \left| y \right| = \log \left| x \right| + C\]
\[\text{ Since the curve passes through }\left( 3, - 4 \right),\text{ it satisfies the above equation . }\]
\[ \therefore \frac{1}{2}\log \left| - 4 \right| = \log \left| 3 \right| + C\]
\[ \Rightarrow \log \left| 2 \right| - \log \left| 3 \right| = C\]
\[ \Rightarrow C = \log \left| \frac{2}{3} \right|\]
Putting the value of C, we get
\[\log \left| y \right| = 2\log \left| x \right| + 2\log \left| \frac{2}{3} \right|\]
\[ \Rightarrow \log \left| y \right| = \log \left| \frac{4}{9} x^2 \right|\]
\[ \Rightarrow y = \pm \frac{4}{9} x^2 \]
\[ \Rightarrow 9y - 4 x^2 = 0\text{ or }9y + 4 x^2 = 0\]
\[\text{ The given point does not satisfy the equation }9y - 4 x^2 = 0 . \]
\[ \therefore 9y + 4 x^2 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.11 [पृष्ठ १३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.11 | Q 21 | पृष्ठ १३५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\frac{dy}{dx} = \log x\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} = x \log x\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

y (1 + ex) dy = (y + 1) ex dx


(y2 + 1) dx − (x2 + 1) dy = 0


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


x2 dy + y (x + y) dx = 0


\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Find the differential equation whose general solution is

x3 + y3 = 35ax.


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


The solution of `dy/ dx` = 1 is ______


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×