Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = v - \sqrt{v^2 - 1}\]
\[ \Rightarrow x\frac{dv}{dx} = - \sqrt{v^2 - 1}\]
\[ \Rightarrow \frac{1}{\sqrt{v^2 - 1}}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{\sqrt{v^2 - 1}}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v + \sqrt{v^2 - 1} \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \left( v + \sqrt{v^2 - 1} \right)x \right| = \log C\]
\[ \Rightarrow \left( v + \sqrt{v^2 - 1} \right)x = C\]
\[\text{ Putting }v = \frac{y}{x}, \text{ we get }\]
\[ \Rightarrow \left( \frac{y}{x} + \sqrt{\frac{y^2}{x^2} - 1} \right)x = C\]
\[\text{ Hence, }y + \sqrt{y^2 - x^2} = C \text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Verify that y = cx + 2c2 is a solution of the differential equation
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
y ex/y dx = (xex/y + y) dy
(x + 2y) dx − (2x − y) dy = 0
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
y2 dx + (xy + x2)dy = 0
x2y dx – (x3 + y3) dy = 0
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.