Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = v - \sqrt{v^2 - 1}\]
\[ \Rightarrow x\frac{dv}{dx} = - \sqrt{v^2 - 1}\]
\[ \Rightarrow \frac{1}{\sqrt{v^2 - 1}}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{\sqrt{v^2 - 1}}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v + \sqrt{v^2 - 1} \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \left( v + \sqrt{v^2 - 1} \right)x \right| = \log C\]
\[ \Rightarrow \left( v + \sqrt{v^2 - 1} \right)x = C\]
\[\text{ Putting }v = \frac{y}{x}, \text{ we get }\]
\[ \Rightarrow \left( \frac{y}{x} + \sqrt{\frac{y^2}{x^2} - 1} \right)x = C\]
\[\text{ Hence, }y + \sqrt{y^2 - x^2} = C \text{ is the required solution }.\]
APPEARS IN
RELATED QUESTIONS
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
C' (x) = 2 + 0.15 x ; C(0) = 100
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
x2 dy + y (x + y) dx = 0
(x2 − y2) dx − 2xy dy = 0
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
The solution of `dy/ dx` = 1 is ______
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
Solve the differential equation
`x + y dy/dx` = x2 + y2