English

Solve the Following Differential Equation: Y ( 1 − X 2 ) D Y D X = X ( 1 + Y 2 ) - Mathematics

Advertisements
Advertisements

Question

Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 

Sum

Solution

We have,
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{y}{1 + y^2}dy = \frac{x}{1 - x^2}dx\]
Integrating both sides ,
\[\int\frac{y}{1 + y^2}dy = \int\frac{x}{1 - x^2}dx\]
\[\text{ Substituting }1 + y^2 = t\text{ and }1 - x^2 = u \]
\[2ydy = dt\text{ and }- 2x dx = du\]
\[ \therefore \frac{1}{2}\int\frac{1}{t}dt = \frac{- 1}{2}\int\frac{1}{u}du\]
\[ \Rightarrow \frac{1}{2}\log \left| t \right| = - \frac{1}{2}\log \left| u \right| + \log C\]
\[ \Rightarrow \frac{1}{2}\log \left| 1 + y^2 \right| = - \frac{1}{2}\log \left| 1 - x^2 \right| + \log C\]
\[ \Rightarrow \frac{1}{2}\left[ \log \left| 1 + y^2 \right| + \log \left| 1 - x^2 \right| \right] = \log C\]
\[ \Rightarrow \log \left( \left| 1 + y^2 \right|\left| 1 - x^2 \right| \right) = 2 \log C\]
\[ \Rightarrow \left( 1 + y^2 \right)\left( 1 - x^2 \right) = C^2 \]
\[ \Rightarrow \left( 1 + y^2 \right)\left( 1 - x^2 \right) = C_1 , ...........\left(\text{where }C_1 = C^2\right) \]
\[\text{ Hence, }\left( 1 + y^2 \right)\left( 1 - x^2 \right) = C_1\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 38.2 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\frac{dy}{dx} = x \log x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

tan y dx + sec2 y tan x dy = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve the differential equation:

`e^(dy/dx) = x`


y dx – x dy + log x dx = 0


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×