English

Determine the order and degree of the following differential equations. Solution D.E y = aex + be−x d2ydx2=1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`
Sum

Solution

y = aex + be−x  ......(1)

Differentiating w.r.t. x, we get

`dy/dx = ae^x - be^-x`

Again, differentiating w.r.t. x, we get

`(d^2y)/dx^2 = ae^x - be^-x`

∴ `(d^2y)/dx^2 = y` .....[From (i)]

∴ Given function is a solution of the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Differential Equation and Applications - Exercise 8.1 [Page 162]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 8 Differential Equation and Applications
Exercise 8.1 | Q 2.5 | Page 162

RELATED QUESTIONS

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

xy dy = (y − 1) (x + 1) dx


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[x\frac{dy}{dx} = x + y\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Solve the following differential equation.

`(x + a) dy/dx = – y + a`


 `dy/dx = log x`


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×