English

For the Following Differential Equation Verify that the Accompanying Function is a Solution: Differential Equation Function X D Y D X = Y Y = Ax - Mathematics

Advertisements
Advertisements

Question

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax
Sum

Solution

We have,

\[y = ax ..............(1)\]

Given differential equation

\[x\frac{dy}{dx} = y\]

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = a\]

\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} .........\left[\text{Using (1)}\right]\]

\[ \Rightarrow x\frac{dy}{dx} = y\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.03 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.03 | Q 21.1 | Page 25

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


\[\sqrt{1 - x^4} dy = x\ dx\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

(1 + x2) dy = xy dx


Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

tan y dx + sec2 y tan x dy = 0


\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

(y2 − 2xy) dx = (x2 − 2xy) dy


2xy dx + (x2 + 2y2) dy = 0


(x + 2y) dx − (2x − y) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

`dy/dx + 2xy = x`


y2 dx + (xy + x2)dy = 0


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×