Advertisements
Advertisements
Question
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solution
We have,
\[\frac{dy}{dx} = \frac{y}{x} + \sin \left( \frac{y}{x} \right)\]
This is a homogeneous differential equation.
\[\text{Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get}\]
\[v + x\frac{dv}{dx} = v + \sin v\]
\[ \Rightarrow x\frac{dv}{dx} = v + \sin v - v\]
\[ \Rightarrow \frac{1}{\sin v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int \frac{1}{\sin v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int cosec\ v\ dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| \tan \frac{v}{2} \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \tan \frac{v}{2} \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \tan \frac{v}{2} \right| = \log \left| Cx \right|\]
\[ \Rightarrow \tan \frac{v}{2} = Cx\]
\[\text{Putting }v = \frac{y}{x},\text{ we get}\]
\[ \Rightarrow \tan \left( \frac{y}{2x} \right) = Cx\]
\[\text{Hence, }\tan \left( \frac{y}{2x} \right) = Cx\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
(x + y) (dx − dy) = dx + dy
(y2 − 2xy) dx = (x2 − 2xy) dy
3x2 dy = (3xy + y2) dx
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
y2 dx + (x2 − xy + y2) dy = 0
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve
`dy/dx + 2/ x y = x^2`
`dy/dx = log x`
Solve the differential equation xdx + 2ydy = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.