English

What is Integrating Factor of D Y D X + Y Sec X = Tan X? - Mathematics

Advertisements
Advertisements

Question

What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?

Options

  • sec x + tan x

  • log (sec x + tan x)

  • esec x

  • sec x

MCQ

Solution

sec x + tan x

 

We have,

\[\frac{dy}{dx} + y \sec x = \tan x\]

\[\text{ Comparing with }\frac{dy}{dx} + Py = Q, \text{ we get }\]

\[P = \sec x \]

\[Q = \tan x\]

Now,

\[I . F . = e^{\int\sec xdx} \]

\[ = e^{log\left( \sec x + \tan x \right)} \]

\[ = \sec x + \tan x\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 143]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 39 | Page 143

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \log x\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} = x \log x\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} = \sin^2 y\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

x cos2 y  dx = y cos2 x dy


\[x\frac{dy}{dx} = x + y\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

(x + 2y) dx − (2x − y) dy = 0


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Define a differential equation.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve the differential equation:

`e^(dy/dx) = x`


Solve:

(x + y) dy = a2 dx


 `dy/dx = log x`


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Solve: `("d"y)/("d"x) + 2/xy` = x2 


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation y2dx + (xy + x2) dy = 0


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×