Advertisements
Advertisements
Question
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solution
`dy /dx +(x-2 y)/ (2x- y)= 0` ....(i)
Put y = tx ...(ii)
Differentiating w.r.t. x, we get
`dy/dx = t + x dt/dx `...(iii)
Substituting (ii) and (iii) in (i), we get
`t + x dt/dx + (x-2tx)/(2x-tx) = 0`
∴`x dt/dx +t + (1-2t)/2-t = 0`
∴`x dt/dx + (2t - t^2+1-2t)/2-t = 0`
∴`x dt/dx + (1-t^2)/(2-t )= 0`
∴ `x dt/dx = - (1-t^2)/(2-t )`
∴ = `(2-t)/(1-t^2)dt = dx/x`
∴ `(2-t)/(t^2-1)dt = dx/x`
Integrating on both sides, we get
`int (2-t)/(t^2-1) dt = int dx/x`
∴ `int (2-t)/((t+1)(t-1)) dt = int dx/x`
Let `2-t/((t+1)(t-1)) = A/(t+1)+ B/(t-1)`
∴ 2 - t = A(t -1) + B(t + 1)
Putting t = 1, we get
∴ 2 -1 = A(1 -1) + B(1 + 1)
∴ B = `1 /2`
Putting t = -1, we get
2 -(-1) = A(-1 -1) + B(-1 + 1)
∴ A = `(-3)/2`
∴ `int(-3/2)/(t+1)dt +int(1/2)/(t-1) dt = intdx/x`
∴`(-3)/2 int 1/(t+1)dt + 1/2int 1/(t-1) dt = int dx/x`
∴`(-3)/2 log|t+1| + 1/2 log |t-1| = log |x| + log |c_1|`
∴ `-3 log |(y+x)/x| + log|(y-x)/x| = 2log |x| + 2 log |c_1|`
∴ -3 log |y+x| + 3 log |x| + log | y -x| - log |x|
= 2 log |x| + 2 log |c1|
∴ log |y - x| = 3 log |y+x|+ 2 log |c1|
∴ log |y- x |= log |( y+ x )3|+ log | c12|
∴ log | y - x| = log | c12 ( x+y)3|
∴ (y - x) = c(x + y) 3 … |c12 c|
Notes
Answer given in the textbook is `log |(x+y)/(x-y)| - 1/2 log | x^2 - y^2| + 2 log x = log c.`
However, as per our calculation it is ‘(y -x) = c(x+y)3.
APPEARS IN
RELATED QUESTIONS
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
xy dy = (y − 1) (x + 1) dx
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Solve: `("d"y)/("d"x) + 2/xy` = x2
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the differential equation `"dy"/"dx" + 2xy` = y