English

Solve the following differential equation. dydx+x-2y2x-y=0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`

Sum

Solution

`dy /dx +(x-2 y)/ (2x- y)= 0` ....(i)

Put y = tx ...(ii)

Differentiating w.r.t. x, we get

`dy/dx = t + x dt/dx `...(iii)

Substituting (ii) and (iii) in (i), we get

`t + x dt/dx + (x-2tx)/(2x-tx) = 0`

∴`x dt/dx +t + (1-2t)/2-t = 0`

∴`x dt/dx  + (2t - t^2+1-2t)/2-t = 0`

∴`x dt/dx  + (1-t^2)/(2-t )= 0`

∴ `x dt/dx  = - (1-t^2)/(2-t )`

∴ = `(2-t)/(1-t^2)dt = dx/x`

∴  `(2-t)/(t^2-1)dt = dx/x`

Integrating on both sides, we get

`int (2-t)/(t^2-1) dt = int dx/x`

∴  `int (2-t)/((t+1)(t-1)) dt = int dx/x`

Let `2-t/((t+1)(t-1)) = A/(t+1)+ B/(t-1)`

∴  2 - t = A(t -1) + B(t + 1)

Putting t = 1, we get

∴  2 -1 = A(1 -1) + B(1 + 1)

∴  B = `1 /2`

Putting t = -1, we get

2 -(-1) = A(-1 -1) + B(-1 + 1)

∴  A = `(-3)/2`

∴ `int(-3/2)/(t+1)dt +int(1/2)/(t-1) dt = intdx/x`

∴`(-3)/2 int 1/(t+1)dt + 1/2int 1/(t-1) dt = int dx/x`

∴`(-3)/2 log|t+1| + 1/2 log |t-1| = log |x| + log |c_1|`

∴ `-3 log |(y+x)/x| + log|(y-x)/x| = 2log |x| + 2 log |c_1|`

∴ -3 log |y+x| + 3 log |x| + log | y -x| - log |x|

= 2 log |x| + 2 log |c1|

∴ log |y - x| = 3 log |y+x|+ 2 log |c1|

∴  log |y- x |= log |( y+ x )3|+ log | c12|

∴  log | y - x| = log | c12 ( x+y)3|

∴  (y - x) = c(x + y) 3 …  |c12 c|

shaalaa.com

Notes

Answer given in the textbook is `log |(x+y)/(x-y)| - 1/2 log | x^2 - y^2| + 2 log x = log c.`

However, as per our calculation it is ‘(y -x) = c(x+y)3.

  Is there an error in this question or solution?
Chapter 8: Differential Equation and Applications - Exercise 8.4 [Page 167]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 8 Differential Equation and Applications
Exercise 8.4 | Q 1.4 | Page 167

RELATED QUESTIONS

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

xy dy = (y − 1) (x + 1) dx


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve: `("d"y)/("d"x) + 2/xy` = x2 


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Solve the differential equation `"dy"/"dx" + 2xy` = y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×