Advertisements
Advertisements
Question
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
Solution
We have,
\[y = e^x + e^{−x}............(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = e^x - e^{- x}..........(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = e^x + e^{- x} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = y ..........\left[\text{Using (1)}\right]\]
\[\frac{d^2 y}{d x^2} - y = 0\]
It is the given differential equation.
Therefore, y = ex + e−x satisfies the given differential equation.
Also, when \[x = 0; y = e^0 + e^0 = 1 + 1,\text{ i.e. }y(0) = 2\]
And, when \[x = 0; y_1 = e^0 - e^0 = 1 - 1,\text{ i.e. }y' (0) = 0\]
Hence, y = ex + e−x is the solution to the given initial value problem.
APPEARS IN
RELATED QUESTIONS
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
(sin x + cos x) dy + (cos x − sin x) dx = 0
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
y2 dx + (x2 − xy + y2) dy = 0
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
dr + (2r)dθ= 8dθ
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
y2 dx + (xy + x2)dy = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve the differential equation `"dy"/"dx" + 2xy` = y
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.