Advertisements
Advertisements
Question
Solution
We have,
\[ \sin^4 x\frac{dy}{dx} = \cos x\]
\[ \Rightarrow dy = \frac{\cos x}{\sin^4 x}dx\]
Integrating both sides, we get
\[ \Rightarrow \int dy = \int\frac{\cos x}{\sin^4 x}dx\]
\[ \Rightarrow y = \int\frac{\cos x}{\sin^4 x}dx\]
\[\text{ Putting }\sin x = t\]
\[ \Rightarrow \cos x dx = dt\]
\[ \therefore y = \int\frac{1}{t^4}dt\]
\[ = \frac{t^{- 3}}{- 3} + C\]
\[ = \frac{- \sin^{- 3} x}{3} + C\]
\[ = - \frac{1}{3} {cosec}^3 x + C \]
\[\text{ Hence, }y = - \frac{1}{3} {cosec}^3 x +\text{C is the solution to the given differential equation.}\]
APPEARS IN
RELATED QUESTIONS
Show that y = AeBx is a solution of the differential equation
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The solution of the differential equation y1 y3 = y22 is
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
The solution of `dy/ dx` = 1 is ______
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
The function y = ex is solution ______ of differential equation
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.