Advertisements
Advertisements
Question
The solution of the differential equation y1 y3 = y22 is
Options
x = C1 eC2y + C3
y = C1 eC2x + C3
2x = C1 eC2y + C3
none of these
Solution
y = C1 eC2x + C3
\[y_1 y_3 = y_2^2 \]
\[\frac{y_3}{y_2} = \frac{y_2}{y_1}\]
\[ \Rightarrow \frac{\left( \frac{d^3 y}{d x^3} \right)}{\left( \frac{d^2 y}{d x^2} \right)} = \frac{\left( \frac{d^2 y}{d x^2} \right)}{\left( \frac{dy}{dx} \right)}\]
\[ \Rightarrow \int\frac{\frac{d}{dx}\left( \frac{d^2 y}{d x^2} \right)}{\left( \frac{d^2 y}{d x^2} \right)} = \int\frac{\frac{d}{dx}\left( \frac{dy}{dx} \right)}{\left( \frac{dy}{dx} \right)}\]
\[ \Rightarrow \ln\left( \frac{d^2 y}{d x^2} \right) = \ln\left( \frac{dy}{dx} \right) + \ln C_4 \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = C_4 \frac{dy}{dx}\]
\[ \Rightarrow \int\frac{\frac{d}{dx}\left( \frac{dy}{dx} \right)}{\left( \frac{dy}{dx} \right)} = \int C_4 dx\]
\[\ln\left( \frac{dy}{dx} \right) = C_4 x + C_5 \]
\[ \Rightarrow \frac{dy}{dx} = e^{C_4 x + C_5} \]
\[\int dy = \int \left( e^{C_4 x + C_5} \right) dx\]
\[y = \frac{e^{C_4 x + C_5}}{C_4} + C_6 \]
\[y = \frac{e^{C_4 x} . e^{C_5}}{C_4} + C_6 \]
\[ \Rightarrow y = C_1 e^{C_2 x} + C_3 \]
where,
\[ C_1 = \frac{e^{C_5}}{C_4}\]
\[ C_4 = C_2 \]
\[ C_6 = C_3 \]
APPEARS IN
RELATED QUESTIONS
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
x cos y dy = (xex log x + ex) dx
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
(x + y) (dx − dy) = dx + dy
2xy dx + (x2 + 2y2) dy = 0
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.