English

The Solution of the Differential Equation Y1 Y3 = Y22 is - Mathematics

Advertisements
Advertisements

Question

The solution of the differential equation y1 y3 = y22 is

Options

  • x = C1 eC2y + C3

  • y = C1 eC2x + C3

  • 2x = C1 eC2y + C3

  • none of these

MCQ

Solution

y = C1 eC2x + C3

 

\[y_1 y_3 = y_2^2 \]
\[\frac{y_3}{y_2} = \frac{y_2}{y_1}\]
\[ \Rightarrow \frac{\left( \frac{d^3 y}{d x^3} \right)}{\left( \frac{d^2 y}{d x^2} \right)} = \frac{\left( \frac{d^2 y}{d x^2} \right)}{\left( \frac{dy}{dx} \right)}\]
\[ \Rightarrow \int\frac{\frac{d}{dx}\left( \frac{d^2 y}{d x^2} \right)}{\left( \frac{d^2 y}{d x^2} \right)} = \int\frac{\frac{d}{dx}\left( \frac{dy}{dx} \right)}{\left( \frac{dy}{dx} \right)}\]
\[ \Rightarrow \ln\left( \frac{d^2 y}{d x^2} \right) = \ln\left( \frac{dy}{dx} \right) + \ln C_4 \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = C_4 \frac{dy}{dx}\]
\[ \Rightarrow \int\frac{\frac{d}{dx}\left( \frac{dy}{dx} \right)}{\left( \frac{dy}{dx} \right)} = \int C_4 dx\]
\[\ln\left( \frac{dy}{dx} \right) = C_4 x + C_5 \]
\[ \Rightarrow \frac{dy}{dx} = e^{C_4 x + C_5} \]
\[\int dy = \int \left( e^{C_4 x + C_5} \right) dx\]
\[y = \frac{e^{C_4 x + C_5}}{C_4} + C_6 \]
\[y = \frac{e^{C_4 x} . e^{C_5}}{C_4} + C_6 \]
\[ \Rightarrow y = C_1 e^{C_2 x} + C_3 \]
where, 
\[ C_1 = \frac{e^{C_5}}{C_4}\]
\[ C_4 = C_2 \]
\[ C_6 = C_3 \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 140]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 14 | Page 140

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[5\frac{dy}{dx} = e^x y^4\]

x cos y dy = (xex log x + ex) dx


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


(x + y) (dx − dy) = dx + dy


2xy dx + (x2 + 2y2) dy = 0


3x2 dy = (3xy + y2) dx


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×