English

Y √ 1 + X 2 + X √ 1 + Y 2 D Y D X = 0 - Mathematics

Advertisements
Advertisements

Question

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

Solution

We have, 
\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]
\[ \Rightarrow x\sqrt{1 + y^2}\frac{dy}{dx} = - y\sqrt{1 + x^2}\]
\[ \Rightarrow x\sqrt{1 + y^2}dy = - y\sqrt{1 + x^2} dx\]
\[ \Rightarrow \frac{\sqrt{1 + y^2}}{y}dy = - \frac{\sqrt{1 + x^2}}{x}dx\]
Integrating both sides, we get
\[\int\frac{\sqrt{1 + y^2}}{y}dy = - \int \frac{\sqrt{1 + x^2}}{x}dx\]
\[\text{ Putting }1 + y^2 = t^2\text{ and }1 + x^2 = u^2 ,\text{ we get }\]
\[2y dy = 2t dt\text{ and }2x dx = 2u du\]
\[ \Rightarrow dy = \frac{t}{y}dt\text{ and }dx = \frac{u}{x}du\]
\[ \therefore \int\frac{t^2}{y^2}dt = - \int\frac{u^2}{x^2}dx\]
\[ \Rightarrow \int\frac{t^2}{t^2 - 1}dt = - \int\frac{u^2}{u^2 - 1}du\]
\[\Rightarrow \int\frac{t^2 - 1 + 1}{t^2 - 1}dt = - \int\frac{u^2 - 1 + 1}{u^2 - 1}du\]
\[ \Rightarrow \int dt + \int\frac{1}{t^2 - 1}dt = - \int du - \int\frac{1}{u^2 - 1}du\]
\[ \Rightarrow t + \frac{1}{2}\log\left| \frac{t - 1}{t + 1} \right| = - u - \frac{1}{2}\log\left| \frac{u - 1}{u + 1} \right| + C\]
\[\text{ Substituting t by }\sqrt{1 + y^2}\text{ and u by }\sqrt{1 + x^2}\]
\[\sqrt{1 + y^2} + \frac{1}{2}\log\left| \frac{\sqrt{1 + y^2} - 1}{\sqrt{1 + y^2} + 1} \right| = - \sqrt{1 + x^2} - \frac{1}{2}\log\left| \frac{\sqrt{1 + x^2} - 1}{\sqrt{1 + x^2} + 1} \right| + C\]
\[ \Rightarrow \sqrt{1 + y^2} + \sqrt{1 + x^2} + \frac{1}{2}\log\left| \frac{\sqrt{1 + x^2} - 1}{\sqrt{1 + x^2} + 1} \right| + \frac{1}{2}\log\left| \frac{\sqrt{1 + y^2} - 1}{\sqrt{1 + y^2} + 1} \right| = C\]
\[\text{ Hence, }\sqrt{1 + y^2} + \sqrt{1 + x^2} + \frac{1}{2}\log\left| \frac{\sqrt{1 + x^2} - 1}{\sqrt{1 + x^2} + 1} \right| + \frac{1}{2}\log\left| \frac{\sqrt{1 + y^2} - 1}{\sqrt{1 + y^2} + 1} \right| =\text{ C is the required solution .} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 16 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\frac{dy}{dx} = \sin^2 y\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

x2 dy + y (x + y) dx = 0


(y2 − 2xy) dx = (x2 − 2xy) dy


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


Define a differential equation.


The differential equation satisfied by ax2 + by2 = 1 is


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


y2 dx + (x2 − xy + y2) dy = 0


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`dy/dx + y` = 3


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


The function y = ex is solution  ______ of differential equation


Solve the differential equation

`y (dy)/(dx) + x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×