Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} = \tan\left( x + y \right)\]
\[\frac{dy}{dx} = \frac{\sin\left( x + y \right)}{\cos\left( x + y \right)}\]
Let x + y = v
\[ \therefore 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]
\[ \therefore \frac{dv}{dx} - 1 = \frac{\sin v}{\cos v}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{\sin v}{\cos v} + 1\]
\[ \Rightarrow \frac{dv}{dx} = \frac{\sin v + \cos v}{\cos v}\]
\[ \Rightarrow \frac{\cos v}{\sin v + \cos v}dv = dx\]
Integrating both sides, we get
\[\int\frac{\cos v}{\sin v + \cos v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int\frac{\left( \sin v + \cos v \right) + \left( \cos v - \sin v \right)}{\sin v + \cos v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int dv + \frac{1}{2}\int\frac{\cos v - \sin v}{\sin v + \cos v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}v + \frac{1}{2}\int\frac{\cos v - \sin v}{\sin v + \cos v}dv = x\]
\[\text{ Putting }\sin v + \cos v = t\]
\[ \Rightarrow \left( \cos v - \sin v \right)dv = dt\]
\[ \therefore \frac{1}{2}v + \frac{1}{2}\int\frac{dt}{t} = x\]
\[ \Rightarrow \frac{1}{2}v + \frac{1}{2}\log \left| t \right| = x + C\]
\[ \Rightarrow \frac{1}{2}\left( x + y \right) + \frac{1}{2}\log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = x + C\]
\[ \Rightarrow \frac{1}{2}\left( y - x \right) + \frac{1}{2}\log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = C\]
\[ \Rightarrow \left( y - x \right) + \log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = 2C\]
\[ \Rightarrow y - x + \log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = K ...........\left(\text{where, }K = 2C \right)\]
APPEARS IN
RELATED QUESTIONS
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Verify that y = cx + 2c2 is a solution of the differential equation
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
tan y dx + sec2 y tan x dy = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
The differential equation satisfied by ax2 + by2 = 1 is
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
y2 dx + (x2 − xy + y2) dy = 0
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
`xy dy/dx = x^2 + 2y^2`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2