English

Tan Y Dx + Sec2 Y Tan X Dy = 0 - Mathematics

Advertisements
Advertisements

Question

tan y dx + sec2 y tan x dy = 0

Solution

We have, 
\[\tan y dx + \sec^2 y \tan x dy = 0\]
\[ \Rightarrow \sec^2 y \tan x dy = - \tan y dx\]
\[ \Rightarrow \frac{\sec^2 y}{\tan y} dy = - \frac{1}{\tan x}dx\]
\[ \Rightarrow \frac{1}{\cos^2 y} \times \frac{\cos y}{\sin y}dy = - \cot x dx\]
\[ \Rightarrow \frac{1}{\sin y \cos y}dy = - \cot x dx\]
\[ \Rightarrow \frac{2}{\sin 2y}dy = - \cot x dx\]
\[ \Rightarrow 2 \text{ cosec } 2y dy = - \cot x dx\]
Integrating both sides, we get
\[2\int\text{ cosec }2y dy = - \int\cot x dx\]
\[ \Rightarrow \log \tan x = - \log \sin x = \log C\]
\[ \Rightarrow \log \tan x + \log \sin x = \log C\]
\[ \Rightarrow \log \left( \tan x \times \sin x \right) = \log C\]
\[ \Rightarrow \tan x \times \sin x = C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 22 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

(ey + 1) cos x dx + ey sin x dy = 0


\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

(1 − x2) dy + xy dx = xy2 dx


(y + xy) dx + (x − xy2) dy = 0


(y2 + 1) dx − (x2 + 1) dy = 0


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation satisfied by ax2 + by2 = 1 is


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


y2 dx + (x2 − xy + y2) dy = 0


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`dy/dx + 2xy = x`


y2 dx + (xy + x2)dy = 0


x2y dx – (x3 + y3) dy = 0


Solve the differential equation xdx + 2ydy = 0


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×