English

The Solution of the Differential Equation D Y D X = a X + G B Y + F Represents a Circle When - Mathematics

Advertisements
Advertisements

Question

The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when

Options

  • a = b

  • a = −b

  • a = −2b

  • a = 2b

MCQ

Solution

a = −b

 

We have,
\[\frac{dy}{dx} = \frac{ax + g}{by + f}\]
\[ \Rightarrow \left( by + f \right)dy = \left( ax + g \right)dx\]
Integrating both sides, we get
\[\int\left( by + f \right)dy = \int\left( ax + g \right)dx\]
\[ \Rightarrow b\frac{y^2}{2} + fy = a\frac{x^2}{2} + gx + C\]
\[ \Rightarrow b\frac{y^2}{2} + fy - a\frac{x^2}{2} - gx = C\]
\[ \Rightarrow b y^2 + 2fy - a x^2 - 2gx - 2C = 0\]
The above equation represents a circle . 
\[\text{ Therefore, the coffecients of }x^2\text{ and }y^2\text{ must be equal . }\]
\[ i . e . - a = b\]
\[ \Rightarrow a = - b\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 140]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 10 | Page 140

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

y ex/y dx = (xex/y + y) dy


(x + 2y) dx − (2x − y) dy = 0


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


Define a differential equation.


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


y2 dx + (x2 − xy + y2) dy = 0


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


Solve the following differential equation.

`dy/dx + y = e ^-x`


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Solve:

(x + y) dy = a2 dx


`xy dy/dx  = x^2 + 2y^2`


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×