English

√ D 2 Y D X 2 = √ D Y D X - Mathematics

Advertisements
Advertisements

Question

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]
Sum

Solution

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[ \Rightarrow \left( \frac{d^2 y}{d x^2} \right)^\frac{1}{3} = \left( \frac{dy}{dx} \right)^\frac{1}{2} \]

Taking cubes of both the sides, we get

\[ \Rightarrow \frac{d^2 y}{d x^2} = \left( \frac{dy}{dx} \right)^\frac{3}{2} \]

Squaring both the sides, we get

\[ \Rightarrow \left( \frac{d^2 y}{d x^2} \right)^2 = \left( \frac{dy}{dx} \right)^3 \]

\[ \Rightarrow \left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right)^3 = 0\]

In this differential equation, the order of the highest order derivative is 2 and its power is 2. So, it is a differential equation of order 2 and degree 2.

Thus, it is a non-linear differential equation, as its degree is 2, which is greater than 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.01 [Page 5]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.01 | Q 6 | Page 5

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

y ex/y dx = (xex/y + y) dy


3x2 dy = (3xy + y2) dx


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

A population grows at the rate of 5% per year. How long does it take for the population to double?


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


The solution of the differential equation y1 y3 = y22 is


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


The solution of `dy/ dx` = 1 is ______


The solution of `dy/dx + x^2/y^2 = 0` is ______


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


`xy dy/dx  = x^2 + 2y^2`


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation y2dx + (xy + x2) dy = 0


The function y = ex is solution  ______ of differential equation


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×