Advertisements
Advertisements
Question
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Solution
We have,
\[x\frac{dy}{dx} + \cot y = 0\]
\[ \Rightarrow x\frac{dy}{dx} = - \cot y\]
\[ \Rightarrow \tan y\ dy = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\tan y\ dy = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| \sec y \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left( \left| x \right| \left| \sec y \right| \right) = \log C\]
\[ \Rightarrow x \sec y = C . . . . . (1) \]
\[\text{ Given:- } x = \sqrt{2}, y = \frac{\pi}{4} . \]
Substituting the values of x and y in (1), we get
\[\sqrt{2} sec \frac{\pi}{4} = C\]
\[ \Rightarrow C = 2\]
Substituting the value of C in (1), we get
\[x \sec y = 2\]
\[ \Rightarrow x = 2 \cos y\]
\[\text{Hence, }x = 2 \cos y\text{ is the required solution . }\]
APPEARS IN
RELATED QUESTIONS
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Show that y = AeBx is a solution of the differential equation
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
(y + xy) dx + (x − xy2) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
x2 dy + y (x + y) dx = 0
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
The solution of `dy/ dx` = 1 is ______
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve: ydx – xdy = x2ydx.
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: