Advertisements
Advertisements
Question
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Solution
The slope of the curve is given as \[\frac{dy}{dx} = \tan \theta\]
Here,
\[\frac{dy}{dx} = \tan \theta\]
\[\therefore \frac{dy}{dx} = \tan\left\{ \tan^{- 1} \left( \frac{y}{x} - \cos^2 \frac{y}{x} \right) \right\}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \cos^2 \frac{y}{x}\]
\[\text{ Let }y = vx\]
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[ \therefore v + x\frac{dv}{dx} = v - \cos^2 v\]
\[ \Rightarrow x\frac{dv}{dx} = - \cos^2 v\]
\[ \Rightarrow \sec^2 v dv = - \frac{1}{x}dx\]
Integrating both sides with respect to x, we get
\[\int \sec^2 v dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \tan v = - \log \left| x \right| + C\]
\[ \Rightarrow \tan \frac{y}{x} = - \log \left| x \right| + C\]
\[\text{ Since the curve passes through }\left( 1, \frac{\pi}{4} \right),\text{ it satisfies the above equation . }\]
\[ \therefore \tan \frac{\pi}{4} = - \log \left| 1 \right| + C\]
\[ \Rightarrow C = 1\]
Putting the value of C, we get
\[\tan \frac{y}{x} = - \log \left| x \right| + 1\]
\[ \Rightarrow \tan \frac{y}{x} = - \log \left| x \right| + \log e\]
\[ \Rightarrow \tan \frac{y}{x} = \log\left| \frac{e}{x} \right|\]
APPEARS IN
RELATED QUESTIONS
Verify that y = cx + 2c2 is a solution of the differential equation
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
y2 dx + (x2 − xy + y2) dy = 0
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`dy/dx + y = e ^-x`
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the differential equation `("d"y)/("d"x) + y` = e−x
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.