English

Verify that Y = Log ( X + √ X 2 + a 2 ) 2 Satisfies the Differential Equation ( a 2 + X 2 ) D 2 Y D X 2 + X D Y D X = 0 - Mathematics

Advertisements
Advertisements

Question

Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]

Sum

Solution

We have,
\[y = \log \left( x + \sqrt{x^2 + a^2} \right)^2............(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = \frac{d}{dx}\left[ \log \left( x + \sqrt{x^2 + a^2} \right)^2 \right]\]
\[ = \frac{d}{dx}\left[ 2 \log \left( x + \sqrt{x^2 + a^2} \right) \right]\]
\[ = 2\frac{1 + \frac{1}{2}\frac{2x}{\sqrt{x^2 + a^2}}}{x + \sqrt{x^2 + a^2}}\]
\[ = 2\frac{\frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2}}}{x + \sqrt{x^2 + a^2}}\]
\[ = \frac{2}{\sqrt{x^2 + a^2}} ............(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = 2\left( - \frac{1}{2} \right)\frac{2x}{\left( x^2 + a^2 \right)\sqrt{x^2 + a^2}}\]
\[ \Rightarrow \left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} = - \frac{2x}{\sqrt{x^2 + a^2}}\]
\[ \Rightarrow \left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} = - x\frac{dy}{dx} ...........\left[\text{Using (2)} \right]\]
\[ \Rightarrow \left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.03 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.03 | Q 18 | Page 25

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Find the differential equation whose general solution is

x3 + y3 = 35ax.


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


 `dy/dx = log x`


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


The function y = ex is solution  ______ of differential equation


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve: ydx – xdy = x2ydx.


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×