Advertisements
Advertisements
Question
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Solution
We have,
\[y^2 dx + \left( x^2 - xy + y^2 \right) dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- y^2}{x^2 - xy + y^2}\]
This is homogeneous differential equation.
Putting
\[y = vx \text { and} \frac{dy}{dx} = v + x\frac{dv}{dx}, \text { we get }\]
\[v + x\frac{dv}{dx} = \frac{- v^2 x^2}{x^2 - v x^2 + v^2 x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{- v^2}{1 - v + v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- v^2}{1 - v + v^2} - v\]
\[\Rightarrow x\frac{dv}{dx} = \frac{- v - v^3}{1 - v + v^2}\]
\[ \Rightarrow \frac{1 - v + v^2}{v + v^3}dv = - \frac{1}{x}dx\]
\[ \Rightarrow \frac{1 + v^2 - v}{v\left( 1 + v^2 \right)}dv = - \frac{1}{x}dx\]
Integrating both sides, we have
\[\int\frac{1 + v^2 - v}{v\left( 1 + v^2 \right)}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1 + v^2}{v\left( 1 + v^2 \right)}dv - \int\frac{v}{v\left( 1 + v^2 \right)}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{v}dv - \int\frac{1}{1 + v^2}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log\left| v \right| - \tan^{- 1} v = - \log\left| x \right| + \log C\]
\[\Rightarrow \log \left| \frac{vx}{C} \right| = \tan^{- 1} v\]
\[ \Rightarrow \left| \frac{vx}{C} \right| = e^{\tan^{- 1}} v \]
\[\text { Putting } v = \frac{y}{x}, \text { we get }\]
\[ \Rightarrow \left| y \right| = C e^{\tan^{- 1}} v\]
Hence,
\[\left| y \right| = C e^{\tan^{- 1} } v\] is a required solution.
APPEARS IN
RELATED QUESTIONS
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
C' (x) = 2 + 0.15 x ; C(0) = 100
xy (y + 1) dy = (x2 + 1) dx
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve the differential equation:
`e^(dy/dx) = x`
Solve the following differential equation y2dx + (xy + x2) dy = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is