English

Solve the Following Differential Equation : Y 2 D X + ( X 2 − X Y + Y 2 ) D Y = 0 . - Mathematics

Advertisements
Advertisements

Question

Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .

Solution

We have,

\[y^2 dx + \left( x^2 - xy + y^2 \right) dy = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- y^2}{x^2 - xy + y^2}\]

This is homogeneous differential equation.
Putting

\[y = vx \text { and} \frac{dy}{dx} = v + x\frac{dv}{dx}, \text { we get }\]

\[v + x\frac{dv}{dx} = \frac{- v^2 x^2}{x^2 - v x^2 + v^2 x^2}\]

\[ \Rightarrow v + x\frac{dv}{dx} = \frac{- v^2}{1 - v + v^2}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{- v^2}{1 - v + v^2} - v\]

\[\Rightarrow x\frac{dv}{dx} = \frac{- v - v^3}{1 - v + v^2}\]

\[ \Rightarrow \frac{1 - v + v^2}{v + v^3}dv = - \frac{1}{x}dx\]

\[ \Rightarrow \frac{1 + v^2 - v}{v\left( 1 + v^2 \right)}dv = - \frac{1}{x}dx\]

Integrating both sides, we have

\[\int\frac{1 + v^2 - v}{v\left( 1 + v^2 \right)}dv = - \int\frac{1}{x}dx\]

\[ \Rightarrow \int\frac{1 + v^2}{v\left( 1 + v^2 \right)}dv - \int\frac{v}{v\left( 1 + v^2 \right)}dv = - \int\frac{1}{x}dx\]

\[ \Rightarrow \int\frac{1}{v}dv - \int\frac{1}{1 + v^2}dv = - \int\frac{1}{x}dx\]

\[ \Rightarrow \log\left| v \right| - \tan^{- 1} v = - \log\left| x \right| + \log C\]

\[\Rightarrow \log \left| \frac{vx}{C} \right| = \tan^{- 1} v\]

\[ \Rightarrow \left| \frac{vx}{C} \right| = e^{\tan^{- 1}} v \]

\[\text { Putting } v = \frac{y}{x}, \text { we get }\]

\[ \Rightarrow \left| y \right| = C e^{\tan^{- 1}} v\]

Hence, 

\[\left| y \right| = C e^{\tan^{- 1} } v\]  is a required solution.

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Foreign Set 2

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = \log x\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

xy (y + 1) dy = (x2 + 1) dx


\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve the differential equation:

`e^(dy/dx) = x`


Solve the following differential equation y2dx + (xy + x2) dy = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×