English

Xy (Y + 1) Dy = (X2 + 1) Dx - Mathematics

Advertisements
Advertisements

Question

xy (y + 1) dy = (x2 + 1) dx

Solution

We have, 
\[xy\left( y + 1 \right)dy = \left( x^2 + 1 \right)dx\]
\[ \Rightarrow \left\{ y\left( y + 1 \right) \right\}dy = \frac{x^2 + 1}{x}dx\]
\[ \Rightarrow \left( y^2 + y \right)dy = \left( x + \frac{1}{x} \right)dx\]
Integrating both sides, we get 
\[\int\left( y^2 + y \right)dy = \int\left( x + \frac{1}{x} \right)dx\]
\[ \Rightarrow \int y^2 dy + \int y dy = \int x dx + \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{y^3}{3} + \frac{y^2}{2} = \frac{x^2}{2} + \log \left| x \right| + C\]
\[\text{ Hence,} \frac{y^3}{3} + \frac{y^2}{2} = \frac{x^2}{2} + \log \left| x \right| +\text{ C is the required solution }. \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 5 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = \sin^2 y\]

(y2 + 1) dx − (x2 + 1) dy = 0


dy + (x + 1) (y + 1) dx = 0


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

(y2 − 2xy) dx = (x2 − 2xy) dy


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

`(x + y) dy/dx = 1`


The solution of `dy/dx + x^2/y^2 = 0` is ______


Solve the differential equation:

dr = a r dθ − θ dr


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Solve: ydx – xdy = x2ydx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×