English

√ a + X D Y + X D X = 0 - Mathematics

Advertisements
Advertisements

Question

\[\sqrt{a + x} dy + x\ dx = 0\]
Sum

Solution

We have, 
\[\sqrt{a + x}dy + x\ dx = 0\]
\[ \Rightarrow \sqrt{a + x}dy = - xdx\]
\[ \Rightarrow dy = \frac{- x}{\sqrt{a + x}}dx\]
\[ \Rightarrow dy = - \frac{\left( x + a - a \right)}{\sqrt{a + x}}dx\]
\[ \Rightarrow dy = - \left( \sqrt{a + x} - \frac{a}{\sqrt{a + x}} \right)dx\]
Integrating both sides, we get
\[\int dy = - \int\left( \sqrt{a + x} - \frac{a}{\sqrt{a + x}} \right)dx\]
\[ \Rightarrow y = - \frac{2 \left( a + x \right)^\frac{3}{2}}{3} + 2a\sqrt{a + x} + C\]
\[ \Rightarrow y + \frac{2}{3} \left( a + x \right)^\frac{3}{2} - 2a\sqrt{a + x} = C\]
\[\text{ Hence, }y + \frac{2}{3} \left( a + x \right)^\frac{3}{2} - 2a\sqrt{a + x} = \text{C is the solution to the given differential equation.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.05 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.05 | Q 17 | Page 34

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


x2 dy + y (x + y) dx = 0


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

y dx – x dy + log x dx = 0


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve the differential equation `"dy"/"dx" + 2xy` = y


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×