English

Solve the Following Initial Value Problem: ( 1 + Y 2 ) D X + ( X − E − Tan − 1 Y ) D X = 0 , Y ( 0 ) = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]

Sum

Solution

We have,
\[\left( 1 + y^2 \right)dx + \left( x - e^{- \tan^{- 1} y} \right)dy = 0\]
\[ \Rightarrow \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = - \left( 1 + y^2 \right)\]
\[ \Rightarrow \left( 1 + y^2 \right)\frac{dx}{dy} = - \left( x - e^{- \tan^{- 1} y} \right)\]
\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{- \tan^{- 1} y}}{1 + y^2} . . . . . . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dx}{dy} + Px = Q\]
\[\text{ where }P = \frac{1}{1 + y^2}\text{ and }Q = \frac{e^{- \tan^{- 1} y}}{1 + y^2}\]
\[ \therefore I.F. = e^{\int P\ dy} \]
\[ = e^{\int\frac{1}{1 + y^2}} dy \]
\[ = e^{tan^{- 1} y} \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = e^{tan^{- 1} y} ,\text{ we get }\]
\[ e^{tan^{- 1} y} \left( \frac{dx}{dy} + \frac{x}{1 + y^2} \right) = e^{tan^{- 1} y} \frac{e^{- \tan^{- 1} y}}{1 + y^2}\]
\[ \Rightarrow e^{tan^{- 1} y} \left( \frac{dx}{dy} + \frac{x}{1 + y^2} \right) = \frac{1}{1 + y^2}\]
Integrating both sides with respect to y, we get
\[ e^{tan^{- 1} y} x = \int\frac{1}{1 + y^2} dy + C\]
\[ \Rightarrow x e^{tan^{- 1} y} = \tan^{- 1} y + C . . . . . \left( 2 \right)\]
Now, 
\[y\left( 0 \right) = 0\]
\[ \therefore 0 \times e^0 = 0 + C\]
\[ \Rightarrow C = 0\]
\[\text{Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[x e^{tan^{- 1} y} = \tan^{- 1} y + 0\]
\[ \Rightarrow x e^{tan^{- 1} y} = \tan^{- 1} y\]
\[\text{ Hence, }x e^{tan^{- 1} y} = \tan^{- 1} y\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.10 [Page 107]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.10 | Q 37.05 | Page 107

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

x cos y dy = (xex log x + ex) dx


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

dy + (x + 1) (y + 1) dx = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[x\frac{dy}{dx} = x + y\]

(x2 − y2) dx − 2xy dy = 0


2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


The solution of `dy/ dx` = 1 is ______


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve:

(x + y) dy = a2 dx


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


The function y = ex is solution  ______ of differential equation


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×