Advertisements
Advertisements
Question
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Solution
We have,
`x+y(dy)/(dx)=0 .............(1)`
Now,
`y=sqrt(a^2-x^2)`
`rArry'=(-x)/(sqrt(a^2-x^2))`
Putting the above value in (1), we get
`"LHS" =x+y((-x)/(sqrt(a^2-x^2)))`
`=x+sqrt(a^2-x^2)xx(-x)/(sqrt(a^2-x^2))`
`=x-x=0=" RHS"`
Thus, `y=sqrt(a^2-x^2)` is the solution of the given differential equation.
APPEARS IN
RELATED QUESTIONS
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
dy + (x + 1) (y + 1) dx = 0
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
The differential equation satisfied by ax2 + by2 = 1 is
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
The solution of `dy/dx + x^2/y^2 = 0` is ______
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
y2 dx + (xy + x2)dy = 0
`xy dy/dx = x^2 + 2y^2`
Solve the differential equation xdx + 2ydy = 0
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.