Advertisements
Advertisements
Question
Solution
We have,
\[ \cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]
\[ \Rightarrow 2\frac{dy}{dx} = 1 - \cos^2 \left( x - 2y \right)\]
\[\text{Let }x - 2y = v\]
\[ \Rightarrow 1 - 2\frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow 2\frac{dy}{dx} = 1 - \frac{dv}{dx}\]
\[ \therefore 1 - \frac{dv}{dx} = 1 - \cos^2 v\]
\[ \Rightarrow \frac{dv}{dx} = \cos^2 v\]
\[ \Rightarrow \sec^2 v dv = dx\]
Integrating both sides, we get
\[\int \sec^2 v dv = \int dx\]
\[ \Rightarrow \tan v = x - C\]
\[ \Rightarrow \tan\left( x - 2y \right) = x - C\]
\[ \Rightarrow x = \tan\left( x - 2y \right) + C\]
APPEARS IN
RELATED QUESTIONS
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
y ex/y dx = (xex/y + y) dy
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Define a differential equation.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
y2 dx + (xy + x2)dy = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]