English

If xmyn = (x + y)m+n, prove that dydx=yx. - Mathematics

Advertisements
Advertisements

Question

If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]

Sum

Solution

Given: xmyn = (x + y)m+n

​Taking log on both the sides, we get

\[\log\left( x^m y^n \right) = \log \left( x + y \right)^{m + n} \]

\[ \Rightarrow \log\left( x^m \right) + \log\left( y^n \right) = \left( m + n \right) \log\left( x + y \right)\]

\[ \Rightarrow m\log x + n\log y = \left( m + n \right) \log\left( x + y \right)\]

Differentiating w.r.t. x, we get

\[\frac{m}{x} + \frac{n}{y}\frac{dy}{dx} = \frac{m + n}{x + y}\left( 1 + \frac{dy}{dx} \right)\]

\[ \Rightarrow \frac{m}{x} - \frac{\left( m + n \right)}{x + y} = \left( \frac{m + n}{x + y} - \frac{n}{y} \right)\frac{dy}{dx}\]

\[ \Rightarrow \left( \frac{my + ny - nx - ny}{y\left( x + y \right)} \right)\frac{dy}{dx} = \frac{mx + my - mx - nx}{x\left( x + y \right)}\]

\[ \Rightarrow \frac{dy}{dx}\left( \frac{my - nx}{y} \right) = \left( \frac{my - nx}{x} \right)\]

\[ \therefore \frac{dy}{dx} = \frac{y}{x}\]

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Foreign Set 1

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

xy dy = (y − 1) (x + 1) dx


\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

(y + xy) dx + (x − xy2) dy = 0


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×