English

D Y D X = E X ( Sin 2 X + Sin 2 X ) Y ( 2 Log Y + 1 ) - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]
Sum

Solution

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2\log y + 1 \right)}\]
\[ \Rightarrow y\left( 2\log y + 1 \right)dy = e^x \left( \sin^2 x + \sin 2x \right)dx\]
\[ \Rightarrow \left( 2y \log y + y \right)dy = \left( e^x \sin^2 x + e^x \sin 2x \right)dx\]
\[ \Rightarrow 2y \log y\ dy + y\ dy = e^x \sin^2 x dx + e^x \sin 2x dx\]
Integrating both sides, we get

\[ \Rightarrow 2\left[ \log y\int y\ dy - \int\left\{ \frac{d}{dy}\left( \log y \right)\int y dy \right\} \right]dy + \int y dy = \sin^2 x\int e^x\ dx - \int\left[ \frac{d}{dx}\left( \sin^2 x \right)\int e^x dx \right]dx + \int e^x \sin 2x\ dx\]
\[ \Rightarrow 2\left[ \log y \left( \frac{y^2}{2} \right) - \int\left( \frac{1}{y} \right)\frac{y^2}{2}dy \right] + \int y\ dy = \sin^2 x e^x - \int\left[ 2\sin x\cos x e^x \right]dx + \int e^x \sin 2x\ dx + C\]
\[ \Rightarrow y^2 \log y - \int y\ dy + \int y\ dy = e^x \sin^2 x - \int e^x \sin 2x\ dx + \int e^x \sin 2x\ dx + C\]
\[ \Rightarrow y^2 \log y = e^x \sin^2 x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 19 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


(x + y) (dx − dy) = dx + dy


\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

x2 dy + y (x + y) dx = 0


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Define a differential equation.


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


y2 dx + (xy + x2)dy = 0


`xy dy/dx  = x^2 + 2y^2`


The function y = ex is solution  ______ of differential equation


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve the differential equation `"dy"/"dx" + 2xy` = y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×