Advertisements
Advertisements
Question
Solution
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\left( x + y + 1 \right)}\]
\[\text{ Let }x + y + 1 = v\]
\[ \therefore 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]
\[ \therefore \frac{dv}{dx} - 1 = \frac{1}{v}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{1}{v} + 1\]
\[ \Rightarrow \frac{v}{v + 1}dv = dx\]
Integrating both sides, we get
\[\int\frac{v}{v + 1}dv = \int dx\]
\[ \Rightarrow \int\frac{v + 1 - 1}{v + 1}dv = \int dx\]
\[ \Rightarrow \int\left( 1 - \frac{1}{v + 1} \right)dv = \int dx\]
\[ \Rightarrow v - \log\left| v + 1 \right| = x + K\]
\[ \Rightarrow x + y + 1 - \log\left| x + y + 1 + 1 \right| = x + K\]
\[ \Rightarrow y - \log\left| x + y + 2 \right| = K - 1\]
\[ \Rightarrow y - \log\left| x + y + 2 \right| = C_1 ...........\left( C_1 = K - 1 \right)\]
\[ \Rightarrow y - C_1 = \log\left| x + y + 2 \right|\]
\[ \Rightarrow e^{y - C_1} = x + y + 2\]
\[ \Rightarrow \frac{e^y}{e^{C_1}} = x + y + 2\]
\[ \Rightarrow e^{- C_1} e^y = x + y + 2\]
\[ \Rightarrow C e^y = x + y + 2 .............\left( C = e^{- C_1} \right)\]
\[ \Rightarrow x = C e^y - y - 2\]
APPEARS IN
RELATED QUESTIONS
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
x cos y dy = (xex log x + ex) dx
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The differential equation satisfied by ax2 + by2 = 1 is
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Form the differential equation from the relation x2 + 4y2 = 4b2
The solution of `dy/dx + x^2/y^2 = 0` is ______
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.