Advertisements
Advertisements
Question
(x + y) (dx − dy) = dx + dy
Solution
We have,
(x + y) (dx − dy) = dx + dy
\[\Rightarrow x dx + y dx - x dy - y dy = dx + dy\]
\[ \Rightarrow \left( x + y - 1 \right)dx = \left( x + y + 1 \right)dy\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x + y - 1}{x + y + 1}\]
Let x + y = v
\[ \therefore 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]
\[ \therefore \frac{dv}{dx} - 1 = \frac{v - 1}{v + 1}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{v - 1}{v + 1} + 1\]
\[ \Rightarrow \frac{dv}{dx} = \frac{v - 1 + v + 1}{v + 1}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{2v}{v + 1}\]
\[ \Rightarrow \frac{v + 1}{2v}dv = dx\]
Integrating both sides, we get
\[\int\frac{v + 1}{2v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int dv + \frac{1}{2}\int\frac{1}{v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}v + \frac{1}{2}\log\left| v \right| = x + C\]
\[ \Rightarrow \frac{1}{2}\left( x + y \right) + \frac{1}{2}\log\left| x + y \right| = x + C\]
\[ \Rightarrow \frac{1}{2}\left( y - x \right) + \frac{1}{2}\log\left| x + y \right| = C\]
APPEARS IN
RELATED QUESTIONS
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
x cos y dy = (xex log x + ex) dx
xy dy = (y − 1) (x + 1) dx
(1 − x2) dy + xy dx = xy2 dx
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Find the differential equation whose general solution is
x3 + y3 = 35ax.
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Solve the differential equation:
`e^(dy/dx) = x`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`