English

X D Y D X + Y = Y 2 - Mathematics

Advertisements
Advertisements

Question

\[x\frac{dy}{dx} + y = y^2\]

Solution

We have,
\[x\frac{dy}{dx} + y = y^2 \]
\[ \Rightarrow x\frac{dy}{dx} = y^2 - y\]
\[ \Rightarrow \frac{1}{y^2 - y}dy = \frac{1}{x}dx\]
Integrating both sides, we get 
\[\int\frac{1}{y^2 - y}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{y\left( y - 1 \right)}dy = \int\frac{1}{x}dx . . . . . \left( 1 \right)\]
\[\text{ Let }\frac{1}{y\left( y - 1 \right)} = \frac{A}{y} + \frac{B}{y - 1}\]
\[ \Rightarrow 1 = A\left( y - 1 \right) + B\left( y \right)\]
\[\text{ Putting }y = 0,\text{ we get }\]
\[1 = - A\]
\[ \Rightarrow A = - 1\]
\[\text{ Putting }y = 1, \text{ we get }\]
\[1 = B\]
\[ \therefore \frac{1}{y\left( y - 1 \right)} = \frac{- 1}{y} + \frac{1}{y - 1}\]
\[ \Rightarrow \int\frac{1}{y\left( y - 1 \right)}dy = \int\frac{- 1}{y} dy + \int\frac{1}{y - 1}dy . . . . . \left( 2 \right) \]
From (1) & (2), we get 
\[\int\frac{- 1}{y} dy + \int\frac{1}{y - 1}dy = \int\frac{1}{x}dx \]
\[ \Rightarrow - \log \left| y \right| + \log \left| y - 1 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{y - 1}{y} \right| - \log \left| x \right| = \log C\]
\[ \Rightarrow \log\left| \frac{y - 1}{xy} \right| = \log C\]
\[ \Rightarrow \frac{y - 1}{xy} = C\]
\[ \Rightarrow y - 1 = Cxy\]
\[\text{ Hence, }y - 1 = Cxy\text{  is the required solution .}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 9 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

(y + xy) dx + (x − xy2) dy = 0


\[\frac{dy}{dx} = 1 - x + y - xy\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The differential equation satisfied by ax2 + by2 = 1 is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

dr + (2r)dθ= 8dθ


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


y2 dx + (xy + x2)dy = 0


`xy dy/dx  = x^2 + 2y^2`


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×