Advertisements
Advertisements
Question
Solution
We have,
\[x\frac{dy}{dx} + y = y^2 \]
\[ \Rightarrow x\frac{dy}{dx} = y^2 - y\]
\[ \Rightarrow \frac{1}{y^2 - y}dy = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{y^2 - y}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{y\left( y - 1 \right)}dy = \int\frac{1}{x}dx . . . . . \left( 1 \right)\]
\[\text{ Let }\frac{1}{y\left( y - 1 \right)} = \frac{A}{y} + \frac{B}{y - 1}\]
\[ \Rightarrow 1 = A\left( y - 1 \right) + B\left( y \right)\]
\[\text{ Putting }y = 0,\text{ we get }\]
\[1 = - A\]
\[ \Rightarrow A = - 1\]
\[\text{ Putting }y = 1, \text{ we get }\]
\[1 = B\]
\[ \therefore \frac{1}{y\left( y - 1 \right)} = \frac{- 1}{y} + \frac{1}{y - 1}\]
\[ \Rightarrow \int\frac{1}{y\left( y - 1 \right)}dy = \int\frac{- 1}{y} dy + \int\frac{1}{y - 1}dy . . . . . \left( 2 \right) \]
From (1) & (2), we get
\[\int\frac{- 1}{y} dy + \int\frac{1}{y - 1}dy = \int\frac{1}{x}dx \]
\[ \Rightarrow - \log \left| y \right| + \log \left| y - 1 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{y - 1}{y} \right| - \log \left| x \right| = \log C\]
\[ \Rightarrow \log\left| \frac{y - 1}{xy} \right| = \log C\]
\[ \Rightarrow \frac{y - 1}{xy} = C\]
\[ \Rightarrow y - 1 = Cxy\]
\[\text{ Hence, }y - 1 = Cxy\text{ is the required solution .}\]
APPEARS IN
RELATED QUESTIONS
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
(y + xy) dx + (x − xy2) dy = 0
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The differential equation satisfied by ax2 + by2 = 1 is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
dr + (2r)dθ= 8dθ
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
y2 dx + (xy + x2)dy = 0
`xy dy/dx = x^2 + 2y^2`
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.