English

Show that the Function Y = a Cos X + B Sin X is a Solution of the Differential Equation D 2 Y D X 2 + Y = 0 - Mathematics

Advertisements
Advertisements

Question

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]

Sum

Solution

We have,

\[y = A \cos x + B \sin x............(1)\]

Differentiating both sides of equation (1) with respect to x, we get

\[\frac{dy}{dx} = - A \sin x + B \cos x...........(2)\]

Differentiating both sides of equation (2) with respect to x, we get

\[\frac{d^2 y}{d x^2} = - A \cos x - B \sin x\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = - \left( A \cos x + B \sin x \right)\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = - y ...........\left[\text{Using equation }\left( 1 \right) \right]\]

⇒ \[\frac{d^2 y}{d x^2} + y = 0\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.03 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.03 | Q 4 | Page 24

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\sqrt{a + x} dy + x\ dx = 0\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


y2 dx + (x2 − xy + y2) dy = 0


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Solve the following differential equation.

`dy/dx + y` = 3


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Solve the differential equation:

`e^(dy/dx) = x`


Solve the differential equation:

dr = a r dθ − θ dr


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×