English

( X − 1 ) D Y D X = 2 X 3 Y - Mathematics

Advertisements
Advertisements

Question

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solution

We have,
\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]
\[ \Rightarrow \frac{1}{y}dy = \frac{2 x^3}{x - 1}dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\frac{2 x^3}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\int\frac{x^3 - 1 + 1}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\int\frac{\left( x - 1 \right)\left( x^2 + x + 1 \right) + 1}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\int\left( x^2 + x + 1 \right)dx + 2\int\frac{1}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = \frac{2}{3} x^3 + x^2 + 2x + \log \left| x - 1 \right| + C\]
\[\text{ Hence, }\log \left| y \right| = \frac{2}{3} x^3 + x^2 + 2x + \log \left| x - 1 \right| + \text{ C is the required solution }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 4 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

(x + y) (dx − dy) = dx + dy


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


y dx – x dy + log x dx = 0


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×