English

Y dx – x dy + log x dx = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

y dx – x dy + log x dx = 0

Sum

Solution

y dx – x dy + log x dx = 0

y dx – x dy = - log x dx

Dividing throughout by dx, we get

`y-x dy/dx =  – log x `

∴ `-xdy/dx + y = - log x`

∴ `dy/dx - 1/(x y) = logx/x`

The given equation is of the form

`dy/dx + py = Q`

where, `P = -1/x and Q = logx/x`

∴ I.F. = `e ^(int^(pdx) = e^(int^(-1/xdx) e ^-logx`

= `e^(logx ^-1) =  x ^-1 = 1/x`

∴ Solution of the given equation is

`y(I.F.) =int Q (I.F.) dx + c`

∴ `y/x = int logx/x xx1/xdx+c`

In R. H. S., put log x = t …(i)

∴ x = et

Differentiating (i) w.r.t. x, we get

`1/xdx = dt`

∴ `y/x = int t/e^t dt +c`

∴ `y/x = int te^t  dt +c`

= `t int e^-t dt - int (d/dt(t)xxint e^-t dt) dt +c `

= `-te^-t - int (-e^-t) dt +c`

= `-te^-t + int e^-t dt +c`

= – te–t – e –t + c

= `(-t-t)/e^t + c`

= `(- logx -1)/x +c`

∴ y = cx – (1 + log x)

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Differential Equation and Applications - Miscellaneous Exercise 8 [Page 173]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.15 | Page 173

RELATED QUESTIONS

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

(x + 2y) dx − (2x − y) dy = 0


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×