Advertisements
Advertisements
Question
y dx – x dy + log x dx = 0
Solution
y dx – x dy + log x dx = 0
y dx – x dy = - log x dx
Dividing throughout by dx, we get
`y-x dy/dx = – log x `
∴ `-xdy/dx + y = - log x`
∴ `dy/dx - 1/(x y) = logx/x`
The given equation is of the form
`dy/dx + py = Q`
where, `P = -1/x and Q = logx/x`
∴ I.F. = `e ^(int^(pdx) = e^(int^(-1/xdx) e ^-logx`
= `e^(logx ^-1) = x ^-1 = 1/x`
∴ Solution of the given equation is
`y(I.F.) =int Q (I.F.) dx + c`
∴ `y/x = int logx/x xx1/xdx+c`
In R. H. S., put log x = t …(i)
∴ x = et
Differentiating (i) w.r.t. x, we get
`1/xdx = dt`
∴ `y/x = int t/e^t dt +c`
∴ `y/x = int te^t dt +c`
= `t int e^-t dt - int (d/dt(t)xxint e^-t dt) dt +c `
= `-te^-t - int (-e^-t) dt +c`
= `-te^-t + int e^-t dt +c`
= – te–t – e –t + c
= `(-t-t)/e^t + c`
= `(- logx -1)/x +c`
∴ y = cx – (1 + log x)
APPEARS IN
RELATED QUESTIONS
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
C' (x) = 2 + 0.15 x ; C(0) = 100
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
(x + 2y) dx − (2x − y) dy = 0
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.