मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Y dx – x dy + log x dx = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

y dx – x dy + log x dx = 0

बेरीज

उत्तर

y dx – x dy + log x dx = 0

y dx – x dy = - log x dx

Dividing throughout by dx, we get

`y-x dy/dx =  – log x `

∴ `-xdy/dx + y = - log x`

∴ `dy/dx - 1/(x y) = logx/x`

The given equation is of the form

`dy/dx + py = Q`

where, `P = -1/x and Q = logx/x`

∴ I.F. = `e ^(int^(pdx) = e^(int^(-1/xdx) e ^-logx`

= `e^(logx ^-1) =  x ^-1 = 1/x`

∴ Solution of the given equation is

`y(I.F.) =int Q (I.F.) dx + c`

∴ `y/x = int logx/x xx1/xdx+c`

In R. H. S., put log x = t …(i)

∴ x = et

Differentiating (i) w.r.t. x, we get

`1/xdx = dt`

∴ `y/x = int t/e^t dt +c`

∴ `y/x = int te^t  dt +c`

= `t int e^-t dt - int (d/dt(t)xxint e^-t dt) dt +c `

= `-te^-t - int (-e^-t) dt +c`

= `-te^-t + int e^-t dt +c`

= – te–t – e –t + c

= `(-t-t)/e^t + c`

= `(- logx -1)/x +c`

∴ y = cx – (1 + log x)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.15 | पृष्ठ १७३

संबंधित प्रश्‍न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

(ey + 1) cos x dx + ey sin x dy = 0


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

x2 dy + y (x + y) dx = 0


\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


`xy dy/dx  = x^2 + 2y^2`


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×