मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following differential equation dydx = x2y + y - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation `("d"y)/("d"x)` = x2y + y

बेरीज

उत्तर

`("d"y)/("d"x)` = x2y + y 

= (x2 + 1)y

∴ `1/y  "d"y` = (x2 + 1) dx

Integrating on both sides, we get

`int 1/y  "d"y = int(x^2 + 1)  "d"x`

∴ log |y| = `x^3/3 + x + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.8: Differential Equation and Applications - Q.4

संबंधित प्रश्‍न

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

xy (y + 1) dy = (x2 + 1) dx


\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the differential equation:

dr = a r dθ − θ dr


Solve

`dy/dx + 2/ x y = x^2`


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve: ydx – xdy = x2ydx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×