Advertisements
Advertisements
प्रश्न
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
उत्तर
`("d"y)/("d"x)` = x2y + y
= (x2 + 1)y
∴ `1/y "d"y` = (x2 + 1) dx
Integrating on both sides, we get
`int 1/y "d"y = int(x^2 + 1) "d"x`
∴ log |y| = `x^3/3 + x + c`
APPEARS IN
संबंधित प्रश्न
C' (x) = 2 + 0.15 x ; C(0) = 100
xy (y + 1) dy = (x2 + 1) dx
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the differential equation:
dr = a r dθ − θ dr
Solve
`dy/dx + 2/ x y = x^2`
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve: ydx – xdy = x2ydx.