मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the differential equation: dr = a r dθ − θ dr - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the differential equation:

dr = a r dθ − θ dr

बेरीज

उत्तर

dr = a r dθ − θ dr

∴ (1 + θ) dr = a r dθ

∴ `(dr)/r = a (dθ)/((1 + θ))`

Integrating on both sides, we get

`int (dr)/r = a int (dθ)/(1+θ)`

log | r | = a log | 1 + θ| + log | c |

∴ log | r | = log | c(1 + θ)a|

∴ r = c (1 + θ)a

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.03 | पृष्ठ १७३

संबंधित प्रश्‍न

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


C' (x) = 2 + 0.15 x ; C(0) = 100


\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Solve the following differential equation.

`(x + y) dy/dx = 1`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


`xy dy/dx  = x^2 + 2y^2`


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×