Advertisements
Advertisements
प्रश्न
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
उत्तर
According to the question,
\[\frac{dy}{dx} = y + 2x\]
\[ \Rightarrow \frac{dy}{dx} - y = 2x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where P = - 1 and Q = 2x
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{- \int dx} \]
\[ = e^{- x} \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = e^{- x} , \text{ we get }\]
\[ e^{- x} \left( \frac{dy}{dx} - y \right) = e^{- x} 2x \]
\[ \Rightarrow e^{- x} \frac{dy}{dx} - e^{- x} y = e^{- x} 2x \]
Integrating both sides with respect to x, we get
\[ \Rightarrow y e^{- x} = 2x\int e^{- x} dx - 2\int\left[ \frac{d}{dx}\left( x \right)\int e^{- x} dx \right]dx + C\]
\[ \Rightarrow y e^{- x} = - 2x e^{- x} - 2 e^{- x} + C . . . . . \left( 2 \right)\]
Since the curve passes through origin, we have
\[0 \times e^0 = - 2 \times 0 \times e^0 - 2 e^0 + C\]
\[ \Rightarrow C = 2\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y e^{- x} = - 2x e^{- x} - 2 e^{- x} + 2\]
\[ \Rightarrow y = - 2x - 2 + 2 e^x \]
\[ \Rightarrow y + 2\left( x + 1 \right) = 2 e^x \]
Notes
\[\text{In the question it should be }e^x \text{ instead of }e^{2x} . \]
APPEARS IN
संबंधित प्रश्न
Show that y = AeBx is a solution of the differential equation
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
(1 + x2) dy = xy dx
y (1 + ex) dy = (y + 1) ex dx
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
`dy/dx = log x`
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the differential equation `"dy"/"dx" + 2xy` = y
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is