मराठी

Verify that Y = Log ( X + √ X 2 + a 2 ) 2 Satisfies the Differential Equation ( a 2 + X 2 ) D 2 Y D X 2 + X D Y D X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]

बेरीज

उत्तर

We have,
\[y = \log \left( x + \sqrt{x^2 + a^2} \right)^2............(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = \frac{d}{dx}\left[ \log \left( x + \sqrt{x^2 + a^2} \right)^2 \right]\]
\[ = \frac{d}{dx}\left[ 2 \log \left( x + \sqrt{x^2 + a^2} \right) \right]\]
\[ = 2\frac{1 + \frac{1}{2}\frac{2x}{\sqrt{x^2 + a^2}}}{x + \sqrt{x^2 + a^2}}\]
\[ = 2\frac{\frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2}}}{x + \sqrt{x^2 + a^2}}\]
\[ = \frac{2}{\sqrt{x^2 + a^2}} ............(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = 2\left( - \frac{1}{2} \right)\frac{2x}{\left( x^2 + a^2 \right)\sqrt{x^2 + a^2}}\]
\[ \Rightarrow \left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} = - \frac{2x}{\sqrt{x^2 + a^2}}\]
\[ \Rightarrow \left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} = - x\frac{dy}{dx} ...........\left[\text{Using (2)} \right]\]
\[ \Rightarrow \left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.03 | Q 18 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

(1 + x2) dy = xy dx


\[5\frac{dy}{dx} = e^x y^4\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

(y + xy) dx + (x − xy2) dy = 0


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

(y2 − 2xy) dx = (x2 − 2xy) dy


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


x2y dx – (x3 + y3) dy = 0


y dx – x dy + log x dx = 0


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve the differential equation

`y (dy)/(dx) + x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×