Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
उत्तर
We have,
\[\left( x y^2 + 2x \right) dx + \left( x^2 y + 2y \right) dy = 0\]
\[ \Rightarrow x\left( y^2 + 2 \right) dx + y\left( x^2 + 2 \right) dy = 0\]
\[ \Rightarrow x\left( y^2 + 2 \right) dx = - y\left( x^2 + 2 \right) dy\]
\[ \Rightarrow \frac{x}{\left( x^2 + 2 \right)} dx = - \frac{y}{\left( y^2 + 2 \right)} dy\]
Integrating both sides, we get
\[\int\frac{x}{x^2 + 2} dx = - \int\frac{y}{y^2 + 2} dy\]
\[ \Rightarrow \frac{1}{2}\int\frac{2x}{x^2 + 2} dx = - \frac{1}{2}\int\frac{2y}{y^2 + 2} dy\]
\[ \Rightarrow \frac{1}{2}log \left| x^2 + 2 \right| = - \frac{1}{2}log \left| y^2 + 2 \right| + log C\]
\[ \Rightarrow \frac{1}{2}log \left| x^2 + 2 \right| + \frac{1}{2}log \left| y^2 + 2 \right| = log C\]
\[ \Rightarrow log \left| x^2 + 2 \right| + log \left| y^2 + 2 \right| = 2log C\]
\[ \Rightarrow log \left( \left| x^2 + 2 \right|\left| y^2 + 2 \right| \right) = log C^2 \]
\[ \Rightarrow \left( \left| x^2 + 2 \right|\left| y^2 + 2 \right| \right) = C^2 \]
\[ \Rightarrow \left( x^2 + 2 \right)\left( y^2 + 2 \right) = K\]
\[ \Rightarrow y^2 + 2 = \frac{K}{x^2 + 2}\]
APPEARS IN
संबंधित प्रश्न
Show that y = AeBx is a solution of the differential equation
C' (x) = 2 + 0.15 x ; C(0) = 100
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve the following differential equation.
`dy/dx = x^2 y + y`
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`(x + y) dy/dx = 1`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve:
(x + y) dy = a2 dx
y2 dx + (xy + x2)dy = 0
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is