Advertisements
Advertisements
प्रश्न
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
उत्तर
`("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` ......(i)
Put x + y = u ......(ii)
∴ y = u − x
Differentiating w.r.t. x, we get
`("d"y)/("d"x) = ("du")/("d"x) - 1` .....(iii)
Substituting (ii) and (iii) in (i), we get
`("du")/("d"x) - 1 = ("u" + 1)/("u" - 1)`
∴ `("du")/("d"x) = ("u" + 1)/("u" - 1) + 1`
= `("u" + 1 + "u" - 1)/("u" - 1)`
∴ `("du")/("d"x) = (2"u")/("u" - 1)`
∴ `(("u" - 1)/"u") "du"` = 2dx
∴ `(1 - 1/"u") "du"` 2dx
Integrating on both sides, we get
`int(1 - 1/"u") "du" = 2int "d"x`
∴ u − log |u| = 2x + c
∴ x + y − log |x + y| = 2x + c
∴ − log |x + y| = x − y + c
Putting x = `2/3` and y = `1/3`, we get
− log (1) = `1/3 + "c"`
∴ c = `-1/3`
∴ − log |x + y| = `x - y - 1/3`
∴ log |x + y| = `y - x + 1/3`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Verify that y = cx + 2c2 is a solution of the differential equation
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
(sin x + cos x) dy + (cos x − sin x) dx = 0
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
(x + y) (dx − dy) = dx + dy
x2 dy + y (x + y) dx = 0
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
3x2 dy = (3xy + y2) dx
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve:
(x + y) dy = a2 dx
y2 dx + (xy + x2)dy = 0
`xy dy/dx = x^2 + 2y^2`
y dx – x dy + log x dx = 0
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Solve: ydx – xdy = x2ydx.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: