Advertisements
Advertisements
प्रश्न
(sin x + cos x) dy + (cos x − sin x) dx = 0
उत्तर
We have,
\[\left( \sin x + \cos x \right)dy + \left( \cos x - \sin x \right)dx = 0\]
\[ \Rightarrow dy = - \left( \frac{\cos x - \sin x}{\sin x + \cos x} \right)dx\]
Integrating both sides, we get
\[\int dy = - \int\left( \frac{\cos x - \sin x}{\sin x + \cos x} \right)dx\]
\[ \Rightarrow y = - \int\left( \frac{\cos x - \sin x}{\sin x + \cos x} \right)dx\]
\[\text{ Putting }\sin x + \cos x = t\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \therefore y = - \int\frac{dt}{t}\]
\[ \Rightarrow y = - \log\left| t \right| + C\]
\[ \Rightarrow y = - \log\left| \sin x + \cos x \right| + C\]
\[ \Rightarrow y + \log\left| \sin x + \cos x \right| = C\]
\[\text{ Hence, }y + \log\left| \sin x + \cos x \right| =\text{ C is the solution to the given differential equation }.\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
(y + xy) dx + (x − xy2) dy = 0
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
y2 dx + (x2 − xy + y2) dy = 0
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Solve
`dy/dx + 2/ x y = x^2`
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.