मराठी

(Sin X + Cos X) Dy + (Cos X − Sin X) Dx = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

(sin x + cos x) dy + (cos x − sin x) dx = 0

उत्तर

We have, 
\[\left( \sin x + \cos x \right)dy + \left( \cos x - \sin x \right)dx = 0\]
\[ \Rightarrow dy = - \left( \frac{\cos x - \sin x}{\sin x + \cos x} \right)dx\]
Integrating both sides, we get
\[\int dy = - \int\left( \frac{\cos x - \sin x}{\sin x + \cos x} \right)dx\]
\[ \Rightarrow y = - \int\left( \frac{\cos x - \sin x}{\sin x + \cos x} \right)dx\]
\[\text{ Putting }\sin x + \cos x = t\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \therefore y = - \int\frac{dt}{t}\]
\[ \Rightarrow y = - \log\left| t \right| + C\]
\[ \Rightarrow y = - \log\left| \sin x + \cos x \right| + C\]
\[ \Rightarrow y + \log\left| \sin x + \cos x \right| = C\]
\[\text{ Hence, }y + \log\left| \sin x + \cos x \right| =\text{ C is the solution to the given differential equation }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.05 | Q 11 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[x\frac{dy}{dx} + y = y^2\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

(y + xy) dx + (x − xy2) dy = 0


(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


y2 dx + (x2 − xy + y2) dy = 0


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Solve

`dy/dx + 2/ x y = x^2`


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×