Advertisements
Advertisements
प्रश्न
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
उत्तर
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
\[ \Rightarrow y\sqrt{1 + x^2}dy = - x\sqrt{1 + y^2}dx\]
\[ \Rightarrow \frac{y}{\sqrt{1 + y^2}}dy = \frac{- x}{\sqrt{1 + x^2}}dx\]
\[ \Rightarrow \int\frac{y}{\sqrt{1 + y^2}}dy = - \int\frac{x}{\sqrt{1 + x^2}}dx\]
\[\text{Let }1 + y^2 = t^2\text{ and }1 + x^2 = p^2 \]
\[ \Rightarrow 2ydy = 2tdt\text{ and }2xdx = 2pdp\]
\[ \Rightarrow ydy = tdt\text{ and }xdx = pdp\]
Substituting in above equation, we get
\[ \Rightarrow \int dt = - \int dp\]
\[ \Rightarrow t = - p + C\]
\[ \Rightarrow \sqrt{1 + x^2} + \sqrt{1 + y^2} = C\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
C' (x) = 2 + 0.15 x ; C(0) = 100
(y2 + 1) dx − (x2 + 1) dy = 0
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`dy/dx = x^2 y + y`
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Solve:
(x + y) dy = a2 dx
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve: `("d"y)/("d"x) + 2/xy` = x2
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx