Advertisements
Advertisements
प्रश्न
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
उत्तर
We have,
\[y = e^x + e^{−x}............(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = e^x - e^{- x}..........(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = e^x + e^{- x} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = y ..........\left[\text{Using (1)}\right]\]
\[\frac{d^2 y}{d x^2} - y = 0\]
It is the given differential equation.
Therefore, y = ex + e−x satisfies the given differential equation.
Also, when \[x = 0; y = e^0 + e^0 = 1 + 1,\text{ i.e. }y(0) = 2\]
And, when \[x = 0; y_1 = e^0 - e^0 = 1 - 1,\text{ i.e. }y' (0) = 0\]
Hence, y = ex + e−x is the solution to the given initial value problem.
APPEARS IN
संबंधित प्रश्न
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
xy dy = (y − 1) (x + 1) dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]